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Binary mixtures of n-alkane chains of comparable length are treated within the Bragg-Williams 
approximation. A simple model is developed to explain which pairs will form a continuous series of solid 
solutions (close to their respective melting points). Results are fit very well by the empirical rule that 
ct~< 1.22 c s ensures such a continuous, mutual solubility. Here, c t is the number of carbon atoms in the 
longer alkane and cs the smaller number. Close analogies are found to the well known Hume-Rothery 
and Vegard's Law generalizations for metallic systems. The issue of crystal similarity as a requirement for 
solid solubility is successfully treated as a minor, possibly spurious complication. 
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INTRODUCTION 

Fractionation during crystallization of polymers is cer- 
tainly important in determining the solid-state mor- 
phology. Qualitative understanding of the factors that 
control fractionation of mixtures of homologous para- 
ffinic molecules is apparently common x ; however, quanti- 
tative descriptions are lacking. Because of the central 
importance of the fractionation process, this situation is 
very unsatisfactory. The elementary case of two- 
component mixtures of normal alkanes is an attractive 
one to consider in order to develop this desirable, 
quantitative understanding. 

The qualitative understanding of fractionation, in 
hydrocarbon systems alluded to above, is largely identical 
to that for metallic substitutional solid solutions. In 
metals, pairs of atoms with compatible crystal symmetries 
will form continuous series of solid solutions if their 
atomic sizes are comparable and their chemical characters 
(electronegativity, valence, etc.) similar 2. Analogously, 
homologous pairs of alkanes are expected to form 
continuous series of solid solutions if their chain lengths 
are comparable and their high-temperature crystal sym- 
metries are compatible. If only the latter requirement is 
not fulfilled, then at least two series of solid solutions will 
form: one when the composition is rich in one component 
and based on its crystal lattice; the other forming from 
compositions rich in the second component and based on 
the second, different lattice. Our principal concern in this 
paper, will be to quantify the critical difference in chain 
lengths for a binary n-alkane system that will prohibit 
solid-solution formation. The symmetry-based issue of 
which systems form continuous solid-solution series and 
which exhibit a discontinuity due to crystal form incom- 
patibility will be examined less rigorously. The latter 
point has already been clearly expounded by Mnyukh a. 

The essence of our results is that molecular size and 
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shape dominate the behaviour of condensed phases so 
completely that only these features need to be carefully 
modelled. This viewpoint is, of course, not new 4. How- 
ever, application of this principle to the solid phases of 
normal alkanes has been generally neglected in favour of 
treatments based on surface energies, end effects or similar 
ideas 1'a'5. Thus, the present approach has significant 
conceptual differences from earlier studies. In the next 
section a rather formal development of the model will be 
presented. The subsequent discussion endeavours to 
justify that model. 

THEORY 

Consider a binary mixture of normal alkanes. Let us 
distinguish the two types with subscripts s and t that may 
be construed to stand for 'short' and 'tall', respectively. Let 
ni denote the number of molecules of species i, X¢ the 
fractional occurrence of species i, c~ its number of carbon 
atoms and Li its length. We shall focus on the solid state of 
such a system very close to its melting temperature TM. 
Thus, we may plausibly and conveniently idealize the 
molecules to be impenetrable, right-circular cylinders of 
radius ri. 

Consider the perfect crystal state of one alkane species. 
We may define this crystal as an array of singly occupied 
lattice cells; each with volume V~ and coordination 
number Z~. Similarly, a lattice denoted with the subscript 
m will be presumed to define the (possible unstable) solid 
solution of every binary mixture. By specifying the rules 
for construction and parameterization of this solution 
lattice, we shall define a model of the solid state and 
subsequently deduce its thermodynamic properties. 

We shall begin with the well-known Bragg-Williams 
approximation 6 for the solid-solution lattice. Con- 
sequently, we postulate random occupation of the nm 
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lattice sites by ns short and n t tall molecules without 
voids (nm=n~+nt). On average this produces 

/1 t 
nsZm--=Z,,nmX~Xt unsymmetrical, neighbour-neighbour 

t l  m 

pairs. To each of these we assign an interaction energy, w, 
to be specified below. The partition function for the solid 
solution is therefore 

n m ! __ n n " - Z . n . X , X , w / k T  

Z~ - qsqt ns !nt !e 
(1) 

where qs and qt are the single molecule partition functions 
for the s and t species, respectively, in the m-lattice. The 
Gibbs free energy per site follows in the usual way from 
equation (1) 

G/nm k T =  - 1 In 
n m  

= Xslnqs  + Xt lnq t  + X ~ I n X  s + XtlnX, 

+ XsX,(Z,,w/k T) 

(2) 

The chemical potential of the ith species obtained from 
equation (2) is 

t~G lnqi + lnXi + (1 - X t)2Z-T W 
I~Jk T= ~ini = (3) 

Let us take the pure crystalline materials at temperature T 
to be our reference states, and denote these with super- 
scripts, °. Then 

# i  - -  [2°  . . . .  2 Z r a  W 
=met~ +(1 - Xt) ~ (4) 

and the critical conditions of phase stability follow 

o 1 (Z.w)  
O ( I ~ i - I ~ t / k T ) = ~ - 2 ( 1 - X t )  = 0  (5a) 

~X~ 

t?2(/~i- #~/kT) - 1 Zmw 
~.X2 - ~ f  ~- 2 ~ -  = 0 (5b) 

Eliminating w from equations (5a) and (5b) yields the 
familiar critical conditions for solid solution stability in 
binary regular solutions, viz. Xt=  1/2 and 

w <<. 2k T/Zm (6) 

This result depends only on the form of equation (1) 
which assumes random occupation of lattice sites and 
pairwise-additive, neighbour-neighbour interaction en- 
ergy. The task remaining is only to supply a recipe for 
computing w that is consistent with these assumptions. 
The following recipe considers size and shape effects to be 
dominant. 

The molecules of interest differ only in the number of 
methylene groups, c~ - 2. If this difference is small, then we 
may guess V~ ~ Vm ~ Vt. In such a situation the difference 
between like and unlike neighbour--neighbour interac- 
tions will be very small; and we shall neglect it entirely. 
Formally restated then, we shall postulate that there exists 
a critical number of methylene groups, v, such that for any 
pair of normal alkanes if c t - c  s <<.v(cs,c,), then w=0.  The 

number v will depend on cs and ct, and we shall calculate it 
as follows. With each alkane there is associated a Van der 
Waal's volume, av According to Bondi 7 

ai=6.88 + 10.23ct (at in cm 3 mo1-1) (7) 

and it follows from this and the projected length per CH 2 
group, p = 1.27 x 10- 8 cm that 

Li = 0.86 + 1.27 Ct (Lt in A/molecule) (8) 

Also, with each alkane we may associate a particular 
volume per molecule at its melting point. This quantity, 
taken as equal to V~ at TM will be computed from 

(9) 

where VLi is the molar volume of the liquid extrapolated to 
its melting point and AV~ is the volume change on fusion. 
Values for VLi and AVn are readily available for many n- 
alkanes s'9. We shall define an expansion factor, ~t, by 

~ =- Vi(T~)/at (10) 

The shape of a lattice site is a rather nebulous quantity 
and we do not wish to specify it explicitly. However, we 
shall assume that it maintains the same ratio of length to 
cross-section as the cylindrical Van der Waal's envelope, 
so that if Ks is the effective length of a site we may write 

Ki = ~/aLt (11) 

The important quantity v will be taken as 

K s - L s 
v = - -  (12) 

where p = 1.27 x 10 - 8 cm; the same value used to arrive at 
equation (8). Combining equations (8), (10), (11) and (12) 
gives an expression for the maximum number of carbon 
atoms in the longer partner that can mix ideally (w=0) 
with an alkane possessing cs carbon atoms: 

c* = 0.677(~/3 - 1) + g~/ac s (13) 

Table 1 collects together some of the important para- 
meters of equations (9)-(13) for n-alkanes of modest 
molecular weight. 

If c t > c* then the Van der Waal's 'length' of the longer 
alkane partner exceeds the lattice cell 'length' of the 
smaller partner, and ideal mixing becomes very improb- 
able. Then w must be computed. We shall estimate the 
energy required to distort the m-lattice just sufficiently to 
maintain random mixing and identify this as w. Physical 
justification will be reserved for the Discussion section 
(see below). 

Suppose that G>c* and consider a pair of adjacent 
lattice cells, one with a molecule of species s and the other 
occupied by t. If the lattice framework is to be continuous, 
then this juxtaposition requires that the s cell stretch in 
order to smoothly bound the cell occupied by t. This 
'stretching' process is not to be interpreted too literally. 
One should not imagine a locally expanded lattice along 
an s-t boundary. The geometrical deformation of the s- 
lattice site will be delocalized (see Discussion) over an 
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Table 1 Important parameters for the calculation of  w described in the text. Tabulated against the number of carbon atoms of each 
n-alkane, c, are: TM, melting point in degrees K; V(TM) the molar volume at T u in cm 3 mole -1 ; e l / 3 ,  the cube root of the expansion factor 
defined in equation (8): v, the number of additional carbon atoms tolerable without necessary lattice distortion; and A, the maximum (f  = 1 ) 
correction factor to <~1/3 defined in equation (18) 

c TM V(TM) a 1/3 v A( f  = I) 

8 216 130 1.14 1.18 
10 244 160 1.13 1,44 
12 264 191 1.14 1.74 
13 268 216 1.16 2.13 
14 279 221 1,14 2,02 
16 291 249 1,14 2.25 
17 295 278 1.15 2,74 
18 301 279 1.14 2.52 
19 305 308 1.15 2.99 
22 318 355 1.15 3.47 
24 324 388 1.15 3.80 
28 335 450 1.15 4,42 
32 343 515 1.15 5.06 

1.05 
1.06 
1.07 
1.07 
1.07 
1.07 

.07 

.08 

.08 

.08 

.08 

.08 

.09 

Table 2 Values of  ct, A and the parameters necessary fo r  its computation according to equations 16, 17 and 18 in the text. Expansion data was 
taken f rom the polyethylene study of Davis eta/ .  17 with the crystalline long period, 12 in A, obtained in each case from equation 8. The 
tabulated values of  A and ct were computed with f = 1/2. Differences between the computed values of V(TM) in Column 2 and the experimental 
values appearing in column 3 of Table 1 are discussed in the text (see Discussion) 

d V . 1 0 2  l(dV) .104 
c L = 12 V(TM) dT 3VdT A ( f =  1/2) ct ( f  = 1/2) 

8 11.0 113 4.15 1.22 1.03 9.5 
10 13.6 142 5.41 1.27 1.03 11.7 
12 16.1 171 6.60 1.29 1.03 14.2 
13 17.4 185 7.06 1.27 1.03 15.7 
14 18.6 200 7.74 1.29 1.04 16.7 
16 21.2 229 8.85 1.29 1.04 19.3 
17 22.4 243 9.35 1.28 1.04 20.5 
18 23.7 258 9.94 1.29 1.04 21.5 
19 25.0 272 10.5 1.28 1.04 22.9 
22 28.8 316 12.1 1.28 1.04 26.4 
24 31.3 345 13,2 1.28 1.04 28.8 
28 36.4 402 15.4 1.27 1.04 33.6 
32 41.5 460 17.5 1.27 1.04 38.4 

appreciable volume. However, our model postulates that 
in the hypothetical, step-wise process of (1) random 
mixing of s and t species on the s-lattice, (2) local lattice 
deformation to maintain continuity, (3) delocalization of 
the deformation to produce the final m-lattice, that only 
the second step makes an appreciable energy contribution 
to the total free energy. Because the geometrical change is 
imagined to be delocalized in the final m-lattice the same 
energy contribution is made by each s-t pair irrespective 
of the occupancy of other neighbouring sites. Further- 
more, the energy that accompanies the initial local 
distribution will be viewed as a thermal effect that 
eventually reequilibrates over the entire lattice and raises 
its internal energy. Thus 

ks [de "~-1 
w = Z--~[,d-~) s (14) 

where e is the initial, local strain (AKJKs), T is the 
absolute temperature, (ds/dT)s is the linear thermal 
expansion coefficient of the s-lattice and k is Boltzmann's 
constant. The minimum strain required is given by 

Zl --  Ks  
e = (15)  

Ks 

An upper bound on (de/dT) s is one-third of the volume 

thermal expansion coefficient at the melting point of the 
pure s-alkane. It is an upper bound, since most of the 
requisite initial distortion will be in the direction of the 
extended, alkane axis and this crystal axis is known 1 o to 
be far less sensitive to temperature than the perpendicular 
axes. For lack of better data, and in view of the simple 
model in hand, we shall set 

(16)  

where f is an adjustable parameter obeying 0 <,~.f~< 1. It 
follows from equations (6), (8), (11), (14) and (15) that solid 
solutions are expected when 

c, ~<0.677[~/a(1 + 2T(de/dT) , ) -  1] 
+ ~,t73c,(1 + 2 T(de/d T),) (17) 

The form is directly comparable to equation (13); with the 
only change being the appearance of a new factor 

A -  1 + 2T(de/dT),  (18) 

that multiplies each appearance of %t/3. Parameters 
required by equation (16) are collected in Table 217, and 
values for A are also reported in Table 1. The loci of 
solutions to equations (13) and (17) are plotted in Figure I. 
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Fioure  1 Loci of solutions to equation (17) are displayed for 
various assumed values of the parameter f. The locus wi th f=O is, 
of course, the set of solutions for equation (13) 
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Figure  2 Loci of solutions to equation (17) using the 
parameters tabulated in Table 2 ( f = l / 2 )  is compared to some 
available data. Filled symbols denote systems that show crystal- 
crystal phase separation; open symbols correspond to continuous 
solid solution behaviour; and half-fi l led symbols represent 
systems with discontinuous solid solutions 

RESULTS AND DISCUSSION 

One criterion for the acceptability of the model at hand is 
its success in correlating experimental results. Some of the 
available literature data is compared to the theoretical 
line using A(f= 1/2) in Figure 2. There can be no question 
that the predicted demarcation between miscible and 
immiscible solid phases is consistent with the data 
presented. However, the tabulation is incomplete. An 
exhaustive comparison to both previously published 
work and some new experimental results is being pre- 
pared~ 1. That comparison reinforces the good agreement 
sketched in Figure 2. 

Other aspects of the current model are similarly 
attractive. The empirically observed values of c~ 1/3 (see 
column 4 of Table 1) are sensibly constant and 
c* = ~/3c~.~ 1.15c,. This is gratifying because it recapi- 
tulates the empirical rule of Hume-Rothery ~2 that limits 
the atomic size disparity of metals which form solid 
solutions. In our model, the fully extended molecular 
length of the n-alkanes is the characteristic length that 

plays the same role as atomic diameter in metallic 
solutions. Less quantitatively, our model possesses a close 
relationship to Vegard's Law 13. This empirical obser- 
vation asserts that a characteristic lattice dimension 
should increase linearly with the mole fraction of the 
larger species in a binary solid solution. Although this is 
not explicitly incorporated in our model, it is certainly 
suggested by and consistent with our picture of the 
necessary, delocalized distortion of the m-lattice as it 
accommodates more of the t-species. Thus, the methods of 
parameterizing and calculating model-required quan- 
tities possess striking similarities to simple empirically 
established rules for metallic systems. 

Also, it may be observed (see Figure 1) that the only 
'adjustable' parameter in our model, f, does not have a 
large, quantitative role to play. The very loose, indeed, it is 
arguably a ludicrously weak upper bound o f f =  1 only 
changes the correction factor, A, by 10% from its value at 
f =  0 (see column 6 of Table 1). Evidently, a careful estimate 
of A, hence w, is not required. 

It was mentioned in the Introduction that the necessity 
of matching the symmetries of the respective crystal 
lattices is a complicating feature of binary n-alkane solid 
solutions. It is a rather uninteresting complication for 
most of the chain lengths analysed here; and certainly so 
for larger molecular weights. The facts 14 are that for 
q~>44 all alkanes melt from an orthorhombic crystal. 
Consequently, the question of crystal compatability is 
moot for these chains. For n-alkanes defined by a number 
of carbon atoms in the range 9 ~<c~ ~<43, all melt from a 
closely related, hexagonal, 'rotator' phase except those 
with even numbers in the range 10~<c~<32. The dozen 
alkanes in this latter group exhibit high temperature 
crystal symmetries of the triclinic (10~<ci~<22), mono- 
clinic (28, 30) or undefined (24, 26) variety. Thus, only for 
binary mixtures in which at least one of the components 
falls into this latter group is the question of crystal- 
symmetry even relevant. Moreover, for all of the n- 
alkanes (ci > 8) the high temperature crystal phase exhibits 
an orthorhombic sub-cell similar to that found in poly- 
ethylene 1. Thus, in a crude but suggestive approximation, 
one might consider all of the n-alkane solids very close to 
their respective melting points to be crystals with rather 
high densities of thermal and chain-end defects. From this 
point of view, it is obvious that the occasional failure to 
observe continuous solid-solutions for symmetry 
reasons3,15 is an inconclusive result. Kinetic factors and 
details such as material purity and homogeneity will 
assume major importance. These issues are addressed 
more fully in the accompanying paper. Here, we wish only 
to justify passing over the complication of crystal com- 
patibility. It is not important for large molecular weight 
alkanes (q/> 33), to which we now direct attention. 

The critical curve displayed in Figure 2 is very nearly 
linear. Let us extrapolate this line to longer alkanes and 
inquire about its predictive power. An empirical fit gives 

max 1.224c~v in- 0.411 e N = 

with a correlation coefficient of 0.9999. Disregarding the 
trivial constant, we conclude that our extrapolation 
suggests that continuous solid solubility is assured for 
binary extended-chain polyethylene systems in which the 
molecular weights differ by less than about 22% of the 
smaller chain. 

The physical rationale for our model rests on the 
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dominant role played by the repulsive side of inter- 
molecular potentials in determining the structure of 
condensed phases. The same rationale appears in some of 
the recent, successful approaches to liquid structure 4'16. 
Particularly in the method used to estimate w, this 
viewpoint permits us to keep calculations simple. Under 
the presumption that expansion of the lattice is much less 
expensive in free-energy terms than compression of 
molecular Van der Waal's envelopes, it suffices to estimate 
only the former in order to account for the energetic effects 
of excessive molecular crowding. Similarly, the pre- 
sumption of rather weak and reasonably nondirectional 
attractive forces between molecules results in a consistent 
picture of delocalized crystal-defects for the ill-matched 
solid solutions. Of course, these approximations are 
extreme; almost caricatures of the physical situation. 
Nevertheless, they are justified as expedient and semi- 
quantitatively successful simplifications. 

In conclusion, we have found that a very simple scheme 
can successfully predict which pairs of n-alkanes will form 
a series of solid solutions. The scheme focuses solely on 
geometrical factors and presupposes regular solution 
behaviour. The single adjustable parameter in the model, 

f, is bounded in the range between 0 and 1 ; and the results 
are very insensitive to the fractional value chosen. We 
have used f =  1/2. It is apparently unnecessary to invoke 
surface energies, or the like, although one could obviously 
generate a parameterized form for the quantity w by doing 
so. Application of the concepts introduced here to the 
problems of fractionation and morphology in truly 

polymeric n-alkane systems is a topic for future work. 
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